3.1.18 \(\int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx\) [18]

3.1.18.1 Optimal result
3.1.18.2 Mathematica [A] (verified)
3.1.18.3 Rubi [A] (verified)
3.1.18.4 Maple [A] (verified)
3.1.18.5 Fricas [B] (verification not implemented)
3.1.18.6 Sympy [F]
3.1.18.7 Maxima [F]
3.1.18.8 Giac [F(-1)]
3.1.18.9 Mupad [F(-1)]

3.1.18.1 Optimal result

Integrand size = 35, antiderivative size = 141 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=-\frac {\text {arctanh}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 \sqrt {a-b+c} e}-\frac {\text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 \sqrt {c} e} \]

output
-1/2*arctanh(1/2*(b+2*c*cot(e*x+d)^2)/c^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+ 
d)^4)^(1/2))/e/c^(1/2)-1/2*arctanh(1/2*(2*a-b+(b-2*c)*cot(e*x+d)^2)/(a-b+c 
)^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/e/(a-b+c)^(1/2)
 
3.1.18.2 Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.50 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=-\frac {\left (\sqrt {c} \text {arctanh}\left (\frac {b-2 c+(2 a-b) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )+\sqrt {a-b+c} \text {arctanh}\left (\frac {2 c+b \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right )\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a-b+c} e \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}} \]

input
Integrate[Cot[d + e*x]^3/Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4],x]
 
output
-1/2*((Sqrt[c]*ArcTanh[(b - 2*c + (2*a - b)*Tan[d + e*x]^2)/(2*Sqrt[a - b 
+ c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x]^4])] + Sqrt[a - b + c]*Arc 
Tanh[(2*c + b*Tan[d + e*x]^2)/(2*Sqrt[c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan 
[d + e*x]^4])])*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]*Tan[d + e*x] 
^2)/(Sqrt[c]*Sqrt[a - b + c]*e*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x]^ 
4])
 
3.1.18.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.96, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 4184, 1578, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (d+e x)^3}{\sqrt {a+b \cot (d+e x)^2+c \cot (d+e x)^4}}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\cot ^3(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle -\frac {\int \frac {\cot ^2(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1269

\(\displaystyle -\frac {\int \frac {1}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)-\int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {2 \int \frac {1}{4 c-\cot ^4(d+e x)}d\frac {2 c \cot ^2(d+e x)+b}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}-\int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {c}}-\int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {2 \int \frac {1}{4 (a-b+c)-\cot ^4(d+e x)}d\frac {(b-2 c) \cot ^2(d+e x)+2 a-b}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}+\frac {\text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {c}}}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\text {arctanh}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {a-b+c}}+\frac {\text {arctanh}\left (\frac {b+2 c \cot ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{\sqrt {c}}}{2 e}\)

input
Int[Cot[d + e*x]^3/Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4],x]
 
output
-1/2*(ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt 
[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])]/Sqrt[a - b + c] + ArcTanh[(b + 
 2*c*Cot[d + e*x]^2)/(2*Sqrt[c]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x] 
^4])]/Sqrt[c])/e
 

3.1.18.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.18.4 Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.09

method result size
derivativedivides \(\frac {-\frac {\ln \left (\frac {\frac {b}{2}+c \cot \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}\right )}{2 \sqrt {c}}-\frac {\ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+2 \sqrt {a -b +c}\, \sqrt {\left (\cot \left (e x +d \right )^{2}+1\right )^{2} c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+a -b +c}}{\cot \left (e x +d \right )^{2}+1}\right )}{2 \sqrt {a -b +c}}}{e}\) \(153\)
default \(\frac {-\frac {\ln \left (\frac {\frac {b}{2}+c \cot \left (e x +d \right )^{2}}{\sqrt {c}}+\sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}\right )}{2 \sqrt {c}}-\frac {\ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+2 \sqrt {a -b +c}\, \sqrt {\left (\cot \left (e x +d \right )^{2}+1\right )^{2} c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+a -b +c}}{\cot \left (e x +d \right )^{2}+1}\right )}{2 \sqrt {a -b +c}}}{e}\) \(153\)

input
int(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
1/e*(-1/2*ln((1/2*b+c*cot(e*x+d)^2)/c^(1/2)+(a+b*cot(e*x+d)^2+c*cot(e*x+d) 
^4)^(1/2))/c^(1/2)-1/2/(a-b+c)^(1/2)*ln((2*a-2*b+2*c+(b-2*c)*(cot(e*x+d)^2 
+1)+2*(a-b+c)^(1/2)*((cot(e*x+d)^2+1)^2*c+(b-2*c)*(cot(e*x+d)^2+1)+a-b+c)^ 
(1/2))/(cot(e*x+d)^2+1)))
 
3.1.18.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (121) = 242\).

Time = 1.03 (sec) , antiderivative size = 1695, normalized size of antiderivative = 12.02 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\text {Too large to display} \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="fricas")
 
output
[1/4*(sqrt(a - b + c)*c*log(2*(a^2 - 2*a*b + b^2 + 2*(a - b)*c + c^2)*cos( 
2*e*x + 2*d)^2 + 2*a^2 - b^2 + 2*c^2 - 2*((a - b + c)*cos(2*e*x + 2*d)^2 - 
 (2*a - b)*cos(2*e*x + 2*d) + a - c)*sqrt(a - b + c)*sqrt(((a - b + c)*cos 
(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d 
)^2 - 2*cos(2*e*x + 2*d) + 1)) - 4*(a^2 - a*b + b*c - c^2)*cos(2*e*x + 2*d 
)) + (a - b + c)*sqrt(c)*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*cos(2*e*x + 2* 
d)^2 + b^2 + 4*(a + 2*b)*c + 8*c^2 - 4*((b - 2*c)*cos(2*e*x + 2*d)^2 - 2*b 
*cos(2*e*x + 2*d) + b + 2*c)*sqrt(c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 
- 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e* 
x + 2*d) + 1)) - 2*(b^2 + 4*a*c - 8*c^2)*cos(2*e*x + 2*d))/(cos(2*e*x + 2* 
d)^2 - 2*cos(2*e*x + 2*d) + 1)))/(((a - b)*c + c^2)*e), -1/4*(2*(a - b + c 
)*sqrt(-c)*arctan(-1/2*((b - 2*c)*cos(2*e*x + 2*d)^2 - 2*b*cos(2*e*x + 2*d 
) + b + 2*c)*sqrt(-c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos 
(2*e*x + 2*d) + a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1))/ 
(((a - b)*c + c^2)*cos(2*e*x + 2*d)^2 + (a + b)*c + c^2 - 2*(a*c - c^2)*co 
s(2*e*x + 2*d))) - sqrt(a - b + c)*c*log(2*(a^2 - 2*a*b + b^2 + 2*(a - b)* 
c + c^2)*cos(2*e*x + 2*d)^2 + 2*a^2 - b^2 + 2*c^2 - 2*((a - b + c)*cos(2*e 
*x + 2*d)^2 - (2*a - b)*cos(2*e*x + 2*d) + a - c)*sqrt(a - b + c)*sqrt(((a 
 - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(co 
s(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)) - 4*(a^2 - a*b + b*c - c^2)...
 
3.1.18.6 Sympy [F]

\[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\int \frac {\cot ^{3}{\left (d + e x \right )}}{\sqrt {a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}}}\, dx \]

input
integrate(cot(e*x+d)**3/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(1/2),x)
 
output
Integral(cot(d + e*x)**3/sqrt(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4), 
x)
 
3.1.18.7 Maxima [F]

\[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\int { \frac {\cot \left (e x + d\right )^{3}}{\sqrt {c \cot \left (e x + d\right )^{4} + b \cot \left (e x + d\right )^{2} + a}} \,d x } \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="maxima")
 
output
integrate(cot(e*x + d)^3/sqrt(c*cot(e*x + d)^4 + b*cot(e*x + d)^2 + a), x)
 
3.1.18.8 Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\text {Timed out} \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2),x, algorith 
m="giac")
 
output
Timed out
 
3.1.18.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \, dx=\int \frac {{\mathrm {cot}\left (d+e\,x\right )}^3}{\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^4+b\,{\mathrm {cot}\left (d+e\,x\right )}^2+a}} \,d x \]

input
int(cot(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2),x)
 
output
int(cot(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(1/2), x)